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Abstract

Analytical learning is a set of machine-learning techniques for revising the rep-

resentation of a theory based on a small set of examples of that theory. When the

representation of the theory is correct and complete but perhaps inefficient, an im-

portant objective of such analysis is to improve the computational efficiency of the

representation.
Several algorithms with this purpose have been suggested, most of which are closely

tied to a first-order logical language and are variants of goal regression, such as the

familiar explanation-based generalization (EBG) procedure. But because predicate

calculus is a poor representation for some domains, we would like to extend these

learaing algorithms to apply to other computational models.

In this paper we show that the goal-regression technique applies to a large family of

programming languages, all based on the notion of term-rewriting systems. Included

in this family are three language families of importance to artificial intelligence: logic

programming (such as Prolog); lambda calculus (such as LISP); and combinator-based

languages (such as FP). We also exhibit a new analytical learning algorithm, AL-2,
that learns from success but is otherwise quite different from EBG.

These results suggest that term-rewriting systems are a good framework for analytical-

learning research in general, and that further research should be invested in finding

new learning techniques in the framework.

Introduction

Analytical learning, including the various methods collectively known as explanation-

based learning (EBL), is motivated by the observation that much of human learning derives

from studying a very small set of examples ("explanations") in the context of a large knowl-

edge store. EBL algorithms may be partitioned into those that use explanatory examples to

modify a deficient theory and those that rework a complete and correct theory into a more

useful form. Among the latter are algorithms, such as the familiar EBG algorithm [23, 15],

that learn from success, and other algorithms (e.g., [19, 26]) that learn from failure.

The EBG algorithm changes certain constants in the explanation to variables in such

a way that similar instances may then be solved in one step without having to repeat the



search for a solution. For example, consider this simple logic program for integer addition,

in which plus(a, b,.c) is intended to mean a + b = c and s(a) indicates a + 1:

plus(O,zl,zl) :- true. (i)
pIus(s( 2), x,, *(x,)) :- plus(x2, 3, ,). (ii)

With this program and the instance plus(s(O), 0, s(0)), the EBG algorithm finds the new

rule, plus(s(O),z,s(z)):- true, by analyzing the proof and changing certain occurrences of

the constant 0 to a ratable z. Subsequently, the new instance plus(s(O),s(O),s(s(O))) can

be solved in one step using the new rule, instead of the two steps required by the original

program, provided the program can decide quickly that the new rule is the appropriate one

for solving this new instance.

The results from applying this technique alone have been a bit disappointing. Among

the reasons identified in the literature are the following:

The generalizations tend to be rather weak. Indeed, the longer the proof--and thus

the more information in the example---the fewer new examples are covered by the

generalization.

• Many reasonable and useful generalizations (e.g,, in the example above, the rule

plus(z, J(O), a(z) ) : -- true) are not available using this method alone.

Over time, as more rules are derived, simple schemes for incorporating these rules into

the program eventually degrade the performance of the program, instead of improving

it. The program spends most of its time finding the appropriate rule.

Other issues also need to be raised. While EBG is often described as a "domain-

independent technique for generalizing explanations" [24], it is not a language-independent

technique. Virtually all variants of the algorithm depend on a first-order logical language,

in which terms can be replaced by variables to obtain a more general rule. Even when the

algorithm is coded in, say, Lisp, one represents the rules in predicate calculus and simulates

a first-order theorem prover. Yet domains arise in practice for which predicate calculus is

at best an awkward representation for the essential domain properties [22, 24]. In these

situations the ability to use another language and still be able to apply analytical learning

algorithms would be highly desirable.

Is EBG, then, just a syntactical trick that depends on logic for its existence? If so, its

status as a bona fide learning method is questionable, since important learning phenomena

ought not to depend upon a particular programming language. If EBG is not dependent

on logic, then how do we port EBG directly to other languages? For example, in a typical

functional language the plus program might be coded:

pluszy := ifz=Otheny

else s (plus z y), where z = s (z).



Given the input pluss(0) 0, this programcomputes 8(0) as output. Surely an EBG algorithm

for this language should be able to generalize this example such that the input plus s(O) y

produces s(y), without first translating to a logical representation.

Also, while the formal foundations of EBL have been studied (e.g., [11, 28, 27, 6]), most

of this work has abstracted away the generalization process in order to model the benefits

of path compression. Notable exceptions include [4], where a notion of correctness is defined

for EBG and an EBG algorithm is proved correct, and [8], where EBG is treated as a higher-

order process (since it handles programs as objects), and where modal logic is introduced to

distinguish tentative, non-operational constructs from permanent, operational ones.

Aside from this work, presentations of the EBG algorithm in the AI literature have gener-

ally been informal, and often incomplete. The elegant PROLOG-EBG algorithm [15] is a case

in point. In certain cases it will overgenera!ize. For example, given the instance plus(O, 0, 0)

and the plus program above, it produces the overgeneralization plus(z, _, z) :- true. B.e-

cently several papers, a thesis, and even a textbook have reproduced this algorithm without

noticing or correcting the problem. All of this points to the need for more rigorous presen-

tations of analytical-learning algorithmsaud a consistent framework for such presentations.

This paper addresses both these issues:

Language: We show that the EBG algorithm is a special case of an algorithm that we

call AL-1. We present this algorithm formally in a framework based on term-rewriting

systems (TRS), a formalism that includes, as special cases, logic programming, lambda

calculus, applicative languages, and other languages.

Correctr_ess: In this formalism, the correctness, power, and limitations of the algorithm

can be carefully studied. Proofs then apply immediately to each of the languages

mentioned above.

In addition, by separating the mechanics of generalization from other issues that are more

language dependent, the TRS formalisms help to clarify the fundamental learning problems.
To show that the TRS framework is also useful for formulating new analytical-learning

algorithms, we describe a new algorithm, called AL-2. Like EBG, the algorithm learns from

success while preserving the semantics, and uses the proof of the example to propose new

rules for potential inclusion in the knowledge base. And like EBG, each new rule may have

the effect of improving or degrading the average performance of the program, depending on

what problem instances occur subsequently. Unlike EBG, the language in which the rules

are expressed is modified. New symbols may be introduced in order to abbreviate frequently

occurring terms and to shorten common sub-proofs. This resembles what humans do, for

example, when we say "EBG" instead of "explanation-based generalization" or "prime"

instead of "natural number divisible only by itself and one". Thus AL-2 joins EBG as

another technique for learning from success, and can be added to a growing list of analytical

learning methods (e.g., [19, 24, 26, 29]). As the toolbox for analytical learning expands, it

becomes more important to abstract the algorithms away from specific domains, to formalize

the procedures, and to characterize their properties. The TRS framework facilitates this task.
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The style in which the results in this paper are presented is mathematical, since the main

objective is formally to extend the EBG algorithm. The NASA research project under which

this research has been conducted, however, is developing practical algorithms for Machine

Learning. The applications we envision for algorithms of the type considered here include

the ease wherein a correct program or expert system learns from experience to reduce the

amount of computation and the size of internal storage required to solve "typical" problem

instances, without ever compromising correctness. Experience has shown that application

programs often expend most of their resources repeating a rather small number of essentially

identical steps. Effective methods for indexing and rearranging partial computations may,

therefore, offer significant returns in overall performance.

The contents of this paper are as follows. We first develop a family of typed-term languages

that possesses a lattice structure suited to the kind of generalization and specialization

procedures needed for analytical learning. Based on these we define the class of term-

rewriting systems that serve as computational models. The AL-1 and AL-2 algorithms

are expressed in this framework and are accompanied by theorems that characterize their

behavior. Along the way, we shall compare our framework to related work on term rewriting

and unification theory.

Typed-Term Languages

The algorithms we shall develop operate on symbolic (syntactical) expressions that we call

terms. The set of all admissible terms is a formal language generated bY a spedal class of

context-free grammars. The non-terminals of this grammar determine the types (also called

sorts) assigned to each term; we therefore call these languages typed-term languages. In this

section we define these languages and give examples. In the following section we develop a

lattice structure over these terms, so that we can use the meet and join operations in our

algorithms.

Notation. Familiarity with the basic concepts and conventions of formal language theory

is assumed. Throughout this paper we use the symbol e to designate the empty string.

Concatenation is denoted by • or simply by juxtaposition. If A is a set of symbols, A*

denotes the Kleene closure of A under finite concatenation, and A + = A* - {¢). N denotes

the set of natural numbers. | - _

Definition 1 A tz0ed-term grammar (ttg) is an unambiguous, context-free grammar (At', ,4,

_o, Go), with the following special form:

s The set At. of non-terminal symbols is divided into two subsets: a set of generul types ,

denoted {Go, GI,...}, and a set of special types, denoted {S 1, S=,...}. G o is the "start"

symbol for the grammar.

• The set ,4 of terminal symbols is likewise divided into subsets. There is a finite set

of constants, {cl, c2,..., q,}, and for each general type G _ there is a countable set of

variables, denoted {=i, z/2,...}.



• The set ? of productions satisfies three conditions: (1) For any non-terminal N, the set

of sentences generated by N is non-empty and does not contain the empty string. (2)

For any non-terminal N, the right-hand sides of all its productions (N --* al ... ak_¢)

have the same length (or aritv) k2v. For general types this length is one. (3) For each

of that type, there is a production G _general type G i and each variable zj _ z_. No

other productions contain variables. I

Without loss of generality we can assume that all useless symbols and productions have

been removed from the grammar. We often refer to the non-terminal symbols in a typed-

term grammar as types. The set of strings that can be generated from the non-terminal N

is denoted £(N) and described as a typed-term language (ttl) of type N. Note that a string

may have one or more types.

Also note that, according to our our terminology, variables (i.e., the symbols z_) are

terminal symbols. Since some texts describe the non-terminal symbols of a context-free

grammar as variables, there is potential for confusion. In our terminology, variables are

distinguished classes of terminal symbols that may occur in the strings generated by the

grammar. Each countable set of such variables is associated with its own general type.

Thus G o can generate the variables z °, z°, ..., G 1 can generate zl, zl, ... , and so forth.

Variables in our terms play much the same role as universally quantified, bound variables in

the formulas of first-order logic. The set of variables in a term r is denoted 1)(r). The term

is called ground if 1)(r) is empty.

Below we shall give three examples of ttg's generating, respectively, the terms of a logic

programming language (LP), a simple applicative programming language (AP), and a lambda

calculus-based programming language (LC). These three languages will serve as running

examples throughout the presentation.

Example 2 [LP] The grammar below generates a class of goals appropriate to the logic

program plus in the introduction. Accordingly we call our principal type Goal rather than

G °. There is one other general type, to whic& we assign the non-terminal Term (in preference

to Ca), and several special types (Formula, Conjunction, and Term1). This language has

constant symbols plus, true, s, O, A, comma, and two parentheses. The variables gi (for

i > O) are generated by Goa_ while the variables zi are generated by Term. (Only the latter

set of variables are used in conventional logic programming.)

Goal _ Formula ....

Goal _ Conjunction

Goal --4 true

Goal _ gl (for i>l)

Formula ---* plus ( Term, Term,

Conjunction ---* A ( Goal, Goal)

Term _ 0

Term --* zl (for i > 1)

Term _ Term1

Term1 _ s(Term)

r rm )



Examples of goals generated by this language are plus(a(O), zzT, O) and 91z- A con-

junctive pair of goals is represented in this language by a parenthesized conjunction, e.g.,

A (plus(O, O, O), plus(s(O),O,s(O)) ). Strings that are not goals include z_, s(zz,z2), plus(),

and plus(true, O, 0). I

Example 3 [AP] The grammar below generates the class of terms of a simple functional

applicative programming language. Such languages are based on combinatory logic [12] and

capture the basic notions of functional application. In this example, the language has one

general type, which we shall write Ezpression instead of G °. In addition it has one special

type (Application), four constant symbols (plus, succ, open-paten, and close-parch) and a

countable set of variables (=i). The start symbol is Ez_pression. The expression ( rl r2 ),

where rl and r2 are arbitrary terms, is intended to indicate that the function denoted by ra

is to be applied to the argument r2.

Ezpresszon

Ezpresszon

Ezpresszon

Ezpresszon

Ezpresszon

Application

Application

--* 0

--+ SUCC

--_ plus

z, (for i> 1)

( Ezpression Ezpression)

Examples of terms generated by this grammar are: plus, zs, (plus (succ zs)) and ((plus succ) zs).

Note that the arity of the non-terminal Application is four, while that of Expression is (nee-

essarily) one. I

Example 4 [LC] The grammar below generates the class of terms of a lambda calculus-

based programming language. This language has two general types: E_pression and Lambda-

param, whose respective variables are labeled zi and vi. The type Lambda-paramis unusual in

that variables axe the only strings of that type. Ezpressionl is a special type. The constants

of the language are _, period, open-paren, close-paten, plus, and others whose utility will

become apparent in subsequent examples.

EzT_ression _ Ezpressionl

Ez_pression _ Lambda-param

EZT?ression _ plus I succ I zero _"l second

Ez_pression _ zi (for i > 1)

E_press_eni --, _ Lambda-param. E_ression _

Ezpressionl _ ( Ezpression Ez_pression )

Lambda-param --* vl (for i > 1)

Examples of terms generated by this grammar are: plus, =5, (plus (succ z,)), _aa
av_ . (plus(_ _)). m



In the remainder of this section and in the next, we extend to ttl's such operations as

substitution, replacement, and unification familiar from first-order unification theory. For

this purpose, we need some notation. Fix a typed-term grammar (ttg), let N be any type,

and let r be a term of type N. The unique parse tree whose root is labeled N and whose

yield (i.e., the string obtained by concatenating the labels on the leaves in order from left to

right) is r, is called the parse tree oft and is written tree(r). The yield of a parse tree Y is

denoted yield(Y). Thus yield(tree(r))= r.

In this paper we shall adopt a specific data structure for parse trees. Let Y be a parse

tree whose root is labeled r.

• If Y is a leaf, it is represented simply by its label, r.

• Otherwise, let Y1,... ,Yk be the (representations of the) immediate subtrees of Y; then

Y is represented:

r Y1,...,Yk.

Since ttg's are unambiguous by definition, and since each non-terminal has a fixed arity, this

representation is efficient for constructing parse trees from terms and for determining the

yield of a parse tree.

Definition 5 To each node of a tree Y we assign a unique string of integers, called a location,

as follows:

• The location of the root of Y is ,;

• Let Ya,..., Yk be the immediate descendents of a node whose location is w; then for

1 < i < k, the location of Yi is i- w.

For brevity the dot (.) will often be omitted when confusion is unlikely, e.g., 12 instead of

1.2.

Example 6 [AP] Refer to the grammar above for the AP language. The parse tree for the

term r = ( plus ( zl 0))is

tree(r) = Expression Application ( Ezpression plus

Expression Application ( Expression zl Expression 0 ) )

The location of the subtree Expression 0 is 1.3.1-3; the location of the subtree 0 is 1.3.1.3.1.

I

Definition 7 Let rl be a term of type B1 and r2, a term of type B2 in a ttg. We say that

r2 occurs in rl at location w if, at location w in tree(r1), there is a node labeled B2 and the

yield of the subtree rooted at this node is r2.
The set of term occurrences in r is the set of locations of nodes in the parse of r that are

labeled with any type N. This set will be written f_(r).

The term that occurs at location w in r is denoted r[w].



Example 8 [AP] In Example 6, f_(r)= {e,1,12,13,141,1312, 1313}. The subterm ( zx 0)

of type Ezpression occurs at location 13; the same subterm, but of type Application,occurs

at location 131. I

Definition 9 (Replacement) Let rl be a term of type B1 and r2, a term of type B2. Let

w E f/(rx) be the location of a subterm of type B2 within rl. The string _'[w *- r2] is obtained

by replacing the term in rl at location w by r2.

Example 10 [AP] Refer again to Example 6. If r_ = ( plus ( z_ 0)) and r2 =succ, then

r [13 t2]= ( plussucc).!

Definition 11 (Substitution) With respect to a ttg, a substitution is a mapping 0: V ---, _+

Horn the set of variables V to non,empty strings of terminals _4+ such that (1) for all but

finitely many variables z, O(z) - z, and (2) if 0(z_) -- r, then _" E £(G_). That is, a

substitution changes only finitely many variables and maps variables only to terms of the

same type. The set of variables z such that O(z) _ z is called the domain of 0, written

dora(0). Its codomain is the set of terms 0(dora(0)).

Since the grammax is unambiguous, the sets £(N) axe Heely generated for each N [10];

hence there is a unique morphic extension 0 of 0 from _ to the domain of arbitrary strings

in ._':

• = ,.

• = for   iables

• 0(r) = r for all terminal symbols r except variables; and

• 0(rl "_'2) = 0(rx) • 0(r2) for any strings ra and r2 in .A+.

Henceforth we shall not distinguish between 0 and its extension 0.

Lemma 12 For any type N in a ttg,the language/_(N) is closedunder replacement and

substitution. Specifically,if N and N' axe types, r E £(N), r' E LI(N'), and w is the

location of a term of type N' within r, then the stringr[w _ r']obtained from r and r' by

replacement isitselfa term in £(N).

Likewise, for any substitution8 and stringr E L;(N), the string8(r) isitselfa term in

£(N).

(The easy proof consists in showing that the term obtained by replacement or substitution

is still generated by the grammar starting Horn the non-terminal N.)

To summarize, we have defined a class of languages generated by typed-term grammars,

and defined the notions of substitution for variables and replacement of a subterm at a

specific location. Whereas substitution is purely a string operation, replacement requires

reference to the parse tree in order to identify the subterm at the given location. Never-

theless, these notions axe quite similar to the corresponding operations for first-order terms.



One of the most useful features of first-order terms is that they form a lattice under the sub-

sumption ordering. The meet and join operations of this lattice reflect the semantic notions

of specialization and generalization, respectively. In the next section, we develop a similar

algebraic structure for the expressions of a typed-term algebra.

The Subsumption Lattice of Terms

In this section we order terms according to generality and develop a lattice structure

over the set of strings generated by general terms. Much of this is based on the well-known

theory of first-order terms, so proofs are sketched except where our formalism is substantially

different.

Throughout this section we assume that the typed-term grammar _ -- (A/', .A, G °, _v) has

been fixed. Let B denote an arbitrary non-terminal symbol in the grammar.

Definition 13 Let J_ ("bottom') be a spedal symbol not found in the grammar _. T(B)

is the set {±} U £(B)--that is, the set of terms generated from the non-terminal B together

with the special term .1.. Similarly, let 7"(B) be the set {J_} U {tree(r) [ r E _(B)}.

Definition 14 The binary subsumption relation _ on T(B) is defined as follows:

• r __1_ for all r E T(B);

• For rl,r2 E £(B), ra ___r2 itf there exists a substitution 8 such that 8(ra) = r2.

If both rx __ r_ and r_ __ rl, then we say that rl and r2 axe variants, and write rl -= _'2;

otherwise we write rl _ r_. __ is the inverse of __: rl __ 1-2 iff r2 _E 7"a. Similarly, C is the

inverse of -1.

- is an equivalence relation on T(B). 13 is a quasi-ordering (a reflexive and transitive

relation) but not a partial ordering; for example, z] __ zl and zl _ zl.

Definition 15 If a substitution 8 is a bijective mapping from .4 + to .4 +, then we call 8 a

permutation.

Lemma 16 Two terms _'1 and r2 G £(B) are variants lit there exists a permutation O such

that 8(ra) -- _'2.

PROOF: If_'1and r2 are variants,then by Definition14 there existsubstitutionsO and _bsuch

that 8(rl) = r2 and _/,(ru) = rl. For each variable z occurring in I"1, _/,(8(z)) = z; thus 8(z)

must be a variable. If z mad t/are distinct variables occurring in rl, then _b(0(z)) _ zb(a(lt)),

mad thus 6(z) y_ 6(!t). We may thus take as the required permutation a substitution 8' such

that 0'(:r) = 0(z) and 0'(O(z)) = z for all variables z occurring in ra, and 0'(z) = z for

variables occuring in neither rl nor r2.

The opposite demonstration, that _'a and r2 are variants if there exists a permutation 8

such that 0(r_) = r_, is accomplished by setting _b = 0 -_ and noting that _b(r2) = r_. I
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Although substitution was defined on terms (Definition 11), there is an obvious parallel

operation on parse trees, one that was implicitly used in Lamina 12. Whereas with terms

one replaces a variable x ij by a term r in/_(GJ), with trees one replaces the subtree G j • z ij

by the subtree tree(r) whose root is labeled G j. Thus over parse trees a substitution 8 is a

J for some j) to trees with themapping from tree variables (that is, trees of the form G j • zl

same root G j such that 8 is the identity mapping for almost all tree variables. As usual, 8

extends morphically to a mapping on 7"(B).

With substitution on 7"(B) as the basis, we can define the subsumption ordering -3 and

equivalence with respect to that ordering (=) entirely analogously to Definition 14. The

result corresponding to Lemma 16 also holds.

Lemma 17 Let m be the mapping from 7"(B) to 7"(B) such that re(r) is the parse tree

for r whose root is B, and m(_l_) =_1.. Then m is an order-isomorphism between T(B) and

7"(B). That is, rn is a bijection that preserves the ordering:

ra _3 r2 iff m(ra) _3 re(r2).

The trivial proof is based on the fact that the grammar is unambiguous and that _1_is a

distinguished symbol.

Definition 18 T(B)/_ is the set of equivalence classes of T(B) with respect to the relation

= on T(B). Similarly T(B)/= is the set of equivalence classes of T(B) with respect to the

corresponding equivalence - on T(B). [r] denotes the =-equivalence class of which r is a

member.

The purpose of this section is to argue that T(B)/- is a meet semilattice lattice for every

type B, and a complete lattice for every general type G i. The idea is to inject {'(B) into a

lattice of first-order terms so as to preserve meets and join g. _ - ......

Before doing so, however, let us review some results from unification theory. Recall the

definition of a family FOT of first order terms. Let .7" be a countable set of function symbols

each with a fixed arity, and let 'f be a countable set of variables such that _ f_ V = 0.

The set FOT of first-order terms is the smallest set containing V and the nullary functions

(constants) in _" and closed under functional application, i.e., F rl ... r,_, where F E _- is a

function symbol of arity n > 0 and ri E FOT for each i. With variants in FOT taken to be

equivalent, the set FOT U {.1_} partially ordered by subsumption is a complete lattice, with
effective algorithms for join (U) and meet (I-1) [14, 30]. The meet operation is computed using

a unification algorithm, since by a well-known theorem of Robinson, any finite, unifiable set

of first-order terms has a most-general unifier that is unique modulo variants.

Since our terms are typed, the first-order theory does not apply directly, but the unifica-

tion theory of many-sorted terms has also been studied [32]. Briefly, there is a set of sorts; for

each sort there is a countable set of vm-labies and a finite set of constants; and each function

symbol f of k arguments is assigned a string W1 ... Wk+x indicating that the i'th argument

has sort Wi (for 1 < i < k) and the result has sort Wk+a. There is also a unification theorem
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similar to Robinson's for the well-formed terms generated by these symbols. This assumes,

however_ that variables of one sort do not unify with variables of another sort. When one

sort may be a subsort of another, the theory is more complex. For example, if x is a variable

of type real and y is a variable of type integer, then we can unify the terms z and y by

substituting y for z, but not conversely. Walther [32] shows that, when sorts are partially

ordered, two unifiable terms may have zero, one, or many most general unifiers (mgn's). He

further shows that a necessary and sufficient condition for a Robinsonian property (existence

of a unique mgu) is that this partial order among sorts be a forest.

Since unification is how we propose to implement our meet operations, we likewise seek

a Robinsonian property to apply to our terms. Moreover, interpreting nonterminals in a ttg

as "sorts", we see that the various sorts are related, in that if N1 _ N2, then N2 is a subsort

of N1. However, the ordering is not a forest, and while it may be possible, we have not found

a way to map our use of types onto a sort hierarchy that is a forest. We shall, however,

obtain a Robinsonian property, indicating that our notion of types is somewhat different.

This difference is briefly characterized in an appendix to this report.

The Meet Operation

Notice that if we view non-terminals as function symbols and relate constants and vari-

ables in the obvious way, parse trees look very much like first-order terms. Indeed, having

established an order-isomorphism between the strings T(B) and their parse trees 7"(B), we

are tempted to establish a lattice isomorphism between 7"(B)/_ and the corresponding set

of first-order terms. Unfortunately, this is not possible, because there are many first-order

terms (for example, B z _ where B is a special type) that correspond to no parse tree. But

as it turns out, 7"(B)/= is isomorphic to a sub-semilattice of FOT]=, and to a complete

sublattice when B is a general type G _.

To establish this correspondence requires some work, but having done so, we shall have,

as a consequence of Lemma 17, that T(B)/- is a semilattice (ordered by subsumption) and

that T(G_)/= is a complete lattice. The particular result we need for our algorithms is that

(apart from variants) there is a unique meet (greatest lower bound), rl R r_, for any two

terms rl and _'2, and an effective algorithm for computing it. Also, a theorem characterizing

the AL-1 algorithm will be based on fact that T(G°)/=_ is a complete lattice.

Example 19 [AP] A brief example will quickly illustrate how we compute the meet of two

parse trees. Refer to Example 6, where the parse tree for the term r = ( plus ( zl 0)) is given.

Suppose we wish to find the greatest lower bound between this and the term r' = ( plus z2).

The parse tree for r _ is

Expression Application ( Expression plus Expression z2).

Treating Ezpression as a unary and Application as a 4-ary function symbol and plus and

0 as constants, we unify the parse trees for r and r' with the usual first-order unification

algorithm. The resulting substitution replaces z2 by the tree: Application ( Ezpression zl
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Expression 0 ). The corresponding substitution for the two terms is then {z2 :- (zl 0)}. The

purpose of using the parse trees to construct the substitutution is to ensure that subterms

are unified with other subterms of the appropriate type. |

We define a particular family of first-order terms, FOT. The function symbols in the first-

order language consist of the types ._" in the ttg, with the same arities as in the grammar.

Constants ,4 and variables ]2 in the grammar act as constants and variables, respectively, in

FOT. Let FOTs C FOTbe the subset that contains only variables and terms whose leftmost

function symbol is B. Given the well-known lattice properties of FOT (when ordered by

subsumption), one can readily show that FOTB is a lattice when variants are taken to be

equivalent and a unique smallest element 2. is adjoined. We denote this lattice by FOTs/-.

Note that zl -- z_ in FOT, but not in T.

Next we establish a straightforward mapping # from T into FOT, as follows. Trees of the

form N_I ... _k, where the _i's are constants, map to the identical first-order term N_... (k.

For any general type G' and variable z_, p(G%_) : z_. That is, tree variables map to first-

order variables, p(2.) =2.. Recursively, we map Nrl ... rk to NI"_ ... _'_, where for each j,

l<jSk,
, _ Irj if rj is a constant

rj = _ p(r_) if rj is a parse tree ::::

Lemma 20 For each type B, the mapping p: T(B) ---, FOTs is an injection and prese_rves

the ordering __: if rl __ r_ then/_(rl) _ p(r2), i

Recall the following definitions for first-order terms. A unifier for a pair of terms 1"1,r2

is a substitution 0 such that 0(7_) = 0(r2). A unifier 0 for n and r2 is a most general unifier

(mgu) if, for any other unifier 0' of r_ and r2, 0(r_) __ 0'(r_). The binary operation: N on

FOT is defined as follows:

1. If r: or r_ is ±, then r_ _ r2 =2..

2. If any variable occurs in both _1 and r2, then let r_ be a variant of rl such that r_ and

r2 share no variables; rl _ r2 = 1-_n r_.

3. If r: and r_ are not unifiable, then r: _ r_ =2..

4. Else let 0 be a mgu of r_ and r_; r_ G _-_ - 0(r_) - O(T_).

On FOT/-_, the operation _ is defined: [r:] gl [r_] = [r: _r_]; this is well defined, since r_ _r_

is unique up to variants.

A similar definition could be given directly for trees over 7" (bas_ on the subsumption

ordering __ for trees), but it is convenient simply to refer to the corresponding operations on

FOT. This is possible because p(7"(B)) is closed _der r'l:

_The I"1is not strictly an "operation" because the variant _'_ (item 2 below) is not uniquely defined. It is

an operation on FOT/=, however.
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Lemma 21 Let rl and r2 be trees in {'(B). There exists an element r E {'(B) (either a

tree or _1_), unique up to variants, such that _(r)= _(rx)r7/_(r2). |

Definition 22 Let rx and r2 be arbitrary elements of {'(B). Their meet is given by

rl nr= = v-x(v(r )n v(r=)).

On [rx] n [rd = n rd.

Theorem 23 {"(B)/-, partially ordered by -, is a meet semilattice whose minimum element

is 4_ and whose meet operation is effectively computable by I-1.

PROOF: By Lemma 20, /_ is an order-isomorphism between _'(B) and it image/_(T(B))

under/_. Clearly/_(rx) = #(r2) iff rt -= r2. By Lemma 21, [r_] n [r2] exists for any pair of

trees in T(B)/-_, and is a greatest lower bound of [r_] and [r=] by the corresponding property

for first-order terms. I

The 3oin Operation

{'(B)/- is not a lattice because there may not exist any tree rl tl r_ that subsumes both

rx and r2. For example, if B is a special type, we cannot join B cl and B c2 if cl and c2 are

distinct constants, because there is no variable of type B. For a general type G i, however,

G_z_ subsumes both G _ cx and G _ c2. This is the intuition behind the fact that _'(G_)/= is

a lattice. However we cannot define II so easily as we did r'lwsimply by mapping over to

first-order terms--because subtrees may not join. For example, when we join G _ B cl and

G _ B c2 as trees, we cannot simply join the two subtrees B cj and then attach the result to

a root labeled G i, as we would for the corresponding first-order terms.

Definition 24 We define the binary operation rx It r2 on T(G j) as follows:

• If rx =-1- then rl U 7"2 = r2.

• If r= =.l_ then rx U r2 = r_.

' and' be a variant of rx such that T1• If any variable occurs in both rl and r_, then let r 1

r_ share no variables; rt II r_ = r_ U r2.

• Otherwise T 1 II T 2 = sup(rl,r2) where sup is computed by the algorithm in Figure 1.

Lemma 25 For any rl,r2 E {'(Gi), r = rl U rl is a least common generalization of rx and

r_. That is, r 2- fl, T _ r2, and for any r' such that r' __ rl and r' 2_ r2, r' __ r.
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f,,,

For every general type G j, let ¢ci be an arbitrary injection from all pairs of trees in

¢'(a 0 -{±) to the tree v_ables (aJ_,aJ_,...). fail is a new symbol umque to

this algorithm.

Algorithm 1 sup(rl,r_):

Input: A pair (rl, r2) of parse trees such that no variable

occurring in rl occurs in r2.

Output: A tree, or fail.

Procedure:

Case:

1. rl or r2 is a tree of the form Bcl,.. •, oh, where B is a special type and the cq's

are constants: if rl = r_, then return r:. Else return fail.

2. Vl or r2 is a tree of the form Gia, where a is a constant or a variable: if both rl

and r2 have root G i, then return ea,(rl,r_). Else return fail.

3: Otherwise, let rl - RxU_,...,U_, and r, - R,U_,...,U_, where the U's are
subtrees or constants.

Case:

3.1 R1 = R2 = G _, where G _ is a general type (and hence kl = k2 = 1):

3.11 If U_ = U_, then return rl.

3.12 Else if U_ and U_ are both trees and if sup(U:, U_) _ fail, then return

5". sup(U:,
3.13 Else return Ca_(rl,r2).

3.2 Rx = R2 = B, where B is a special type (and hence kt = k2):

3.21 For all j, 1 < j < k_, let Vj = U) if U_ = U], or sup(U_, U]) if U) and

U] are both trees, or fail otherwise.

3.22 If Vj # fall for all j, 1 _< j < kx, then return B. VI,...V_,. Else return
fail.

3.3 Otherwise, return fail.

Figure 1: The sup algorithm. :: _....

PaOOF: Observe first that t_]is an operation on _'(Gi)--when computing rl U r: according

to Definition 24, the result is in _', and is never fail.
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In the case where either rl or r2 is .1., the proof is trivial. Otherwise, let us define the

depth of a parse tree r to be 0 for tree constants (Bcl,...,ck) and tree variables (O_z_),

and 1 + max{l<j<k) depth(rj) when r - Brl,...,rs. The proof is by induction on d -

rain( depth( vl ), depth(v2) ).

If either rl or r2 has depth zero (cases 1 and 2 in the sup algorithm), it is easy to see

that sup returns fail if the two trees have no common generalization, and a least common

generalization otherwise.

For inductive purposes, assume that for every pair of trees _'_ and I-_ at least one of which

has depth no greater than d, sup(r1, _'2) returns a least common generalization if one exists,

or fail otherwise. Suppose, without loss of generality, that rl has depth d + 1 and that r:

has depth at least d + 1. Let n = I_U_,...,U_, (i = 1,2) as in step 3. If R_ _ R2, there

is clearly no common generalization, and the algorithm correctly returns fail (step 3.3). If

R1 = R2, then necessarily kl = ks - k according to the arity requirements of the grammar.

Consider cases 3.1 and 3.2 where each pair of Uj's (j = 1,2) is an identical pair or

one having a common generalization. Let B = R1 = R2, and v = B. _'1"1,... ,_-'_k, where

= U_ for an identical pair or sup(U_, U]) otherwise. We argue that r is a common

generalization of rl and r2. By the inductive hypothesis, _ is a least common generalization

of U_ and U]; hence there are uuifiers 63 and 6_ (for 1 _< j _< k) such that _}(U-ij) = Uj.

Let 01 = 011o ... o 83, the composition of all the 03's , and similarly for 8 _. We claim that

0_(r) = r_ and 0_(r) = r2. To see this, supp0se a variable C_z_ occurs in two or more of

the _'s. Since cap is an injection, the two pairs of terms that gave rise to CP'z_ must have

been identical. Thus where the domains of the substitutions 03 (for 1 _< j _< k) agree, their

codomains also agree, i.e., the same variables are mapped to the same values. Hence

=
-- T1 ,

and, similarly, O2(r) = _'2. _" is thus a common generalization of rl and r2. Let r' be another

common generalization. Either B, the root of 1"1, is a general type G i and r' = G i z_ for

some variable z_, or r' = B_'_,...,V_k for some subtrees _ (1 < j < k). In the former case,

it is clear that 7' __ r. In the latter, we know that _-j __ _'j for each j, by the inductive

hypothesis, and, again, r' __ T, It follows that _" is a least common generalization.

If, in cases 3.1 and 3.2, there is some j such that sup(U_, U]) = fail, then by the

inductive hypothesis the Uj's have no common generalization, Thus there is no term _-' =

Br_l,...,_ such that r' __ _'1 and r _ 1"_. In case 3.2, sup correctly returns fail. In case

3.1, however, where B is a general type G i, there is a generalization of the form _G z,, and

such a generalization is returned by sup. Any other generalization r' must also be a tree

variable of type G i, whereupon v' __ v.

Thus the inductive hypothesis holds for depth d + 1 as well, and the proof is complete. |

As with the meet, we define [rl] U [r_] to be [r_ lJ rz], which is easily shown to be well

defined on _'(G_)/- -.

Lemma 25, together with Theorem 23, gives us:
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Theorem 26 _'(Ci)/_ -, partially ordered by _ is a lattice whose meet (n) and join (U)

operations are effectively computable.

To argue that 7"(Gi)/-- - is a complete lattice, we note that the ordering r- is Noetherian:

for any [r], there exist only finite chains

[,-]E [,-,]=... E

Thus every subset of 7"(G_)/= has a maximum element in T(GI)/_ -, and completeness then

follows from basic lattice theory (e.g., [7, Chap. 1]).

To summarize the main result of this section:

Theorem 27 Let B be a non-terminal symbol of a typed-term grammar. With the adjunc-

tion of a unique least element 1, the set/_(B) of terms generated by B, modulo equivalence

under variants (-) and partially ordered by subsumption (_), is a meet semilattice. For a

general type G i,/;(G i) is a complete lattice. Finally, the meet and join operations on terms

are effectively computable.

Non-deterministic-Term-Rewrlting Systems

We now define a class of term-rewriting systems over a typed-term algebra. TRS's are

an active research area of theoretical computer science and have already been applied to

machine learning (e.g., [18, 17]). Mooney [24] has applied them to analytical learning as an

alternative to predicate logic. See [3] for a recent survey of general research on TRS's. For

our purposes, a TRS enables us to express our learning algorithms in a form applicable to

many computational models, including logic programming and lambda calculus.

The term-rewriting systems that we shall use are non-deterministic in that, of all rewrite

rules that may be applicable at any stage of the computation, the system always chooses a

rule that ultimately leads to a successful computation, unless no such rule exists. In effect, the

assumption of non-determinism abstracts away all of the backtracking search that occurs in

an actual, deterministic system. This is appropriate, sinc e our analytical learning algorithms

learn from the _mts of a successful search. Further, it is by focusing on non-deterministic

term-rewriting systems that_ we are able to express our analytical learning algorithms i_n a

general form applicable to many computational models. These-models differ widely with

regard to the mechanisms available for removing non-determinism. Hence we would lose this

generality if we focused only on deterministic models. -: .........

We define a non-deterministic, typed-term rewritin 9 system (NTTRS) as follows. Starting

with a typed-term language (inducting the subsumption (__) and meet (lq) relations on the

terms of that language), we add a rewriting relation, as follows:

• /;(GO), the set of terms generated from the principal general type G °, is interpreted as

a set of configurations (or states) of the system.
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• _ is a recursive set of rewr_te rules (rules for short) of the form (a, fl), where both a and

fl are in/:(B) for some type B. B is called the type of the rule. A rule may have more

that one type. _ is closed under substitution: for any substitution 0, (0(a), 0(_)) E

if (a, fl) E R.

• A rewriting step (or step) is a binary relation, written =_, on L(G°). r_ =_ r2 iff:

- rl,r2 6 £(g°);

- (a, fl} E _ is a rule (let B be the rule type);

- w is a position in rl such that r_ Ira] is a subterm of type B and r: [ca] = c_;

- --

More succintly, we rewrite a configuration rl by finding a type-B occurrence of c_ in r_ and

replacing that subterm by ft. By Lemma 12, the resulting term r2 is also a configuration.

=_" is the reflexive, transitive closure of =_.

A configuration to which no rules can be applied is said to be irreducible. The general

theory of term-rewriting systems (TRS's) deals with such issues as the existence and unique-

ness, for each configuration r, of an irreducible form r' such that r =_" r', but these issues

axe beyond the scope of our concerns. A difference between our definition of TRS's and one

that is often used in the literature is that we do not require that V(fl) (the set of variables

occurring in r) be contained in V(a). Logic programming is an example of a TRS where

rules may introduce new variables on the righthand side of a rule.

Example 28 [LP] Refer back to the ttg for logic programming (Example 2) and to the

simple program for addition (plus) in the introduction. A configuration is a goal, possibly

conjunctive. This also includes the goal true and goal variables such as gl. The rewrite rules

axe the Horn clauses. For example, the first rule,

plus(0, Zl,_gl) :-- true (i)

can be viewed as a schema of rules in which goals of the form plus(O, r, r) (where r is any

sentence of type Term) can be rewritten to the goal true.

The configuration A(plus(s(O),O,s(O)), true) can be rewritten by applying rule (ii) to

the subterm plus(s(O),O,s(O)). More precisely, the rule we are applying is rule (ii) in which

the value 0 has been substituted for each of the variables z2, z3, and z4. By closure under

substitution, this is also a rule. 2

After rewriting, we have the new configuration:

^(plus(0,0,0), true).

2The process of instantiating the left side a of a rule so as to match a subterm in the goal and then applying
the resulting, instantiated rule to the configuration is often called demodulation, to make a procedural

distinction from rewriting.
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This new configuration can in turn be rewritten by applying rule (i) (with zl = 0), yielding

A(true, true).

At this point the configuration is irreducible. |

Example 29 [AP] Refer back to the ttg for the simple applicative language in Example 2.

Configurations are any sentence of type Ezpression. Apart from the syntax, rewrite rules

resemble the Curried functional patterns used in such programming ianguages as FL, ML,

and Hasken [13]. To emphasize this similarity, we shall write rules in the form a --/3, instead

of (a,/_). For example, a program for addition similar to the one discussed in the preceding

example is as follows:

((plus0)xl)) = xx (i)
((pl_s(s_cc_2))_3) = (s_c_((pl_s_2)_3)) (ii)

In this language, zero is represented by the constant 0, and the successor of a number n

is represented by (suet n).

Using the two rules above and their instantiations, we obtain the following sequence of

rewrites:

((plus (succO)) O) _ (succ((plusO) 0)) _ (suc¢O).

Although the AP term rewriting system is completely different from that of LP, one can

see that the program for plus is essentially the same as the one in Example 28, and that

there is a direct correspondence between rules in the two systems. |

Example 30 [LC] A configuration in our lambda-calculus language is any term of type

Erpression. The rewrite rules fall into two groups. The first group contains all rules of the

form:

((_,,.Q)R) _ [R/,,]Q,

where Q and R are configurations and [R/v]Q is the result of substituting R for the free

occurrences of v, according to the standard rules for _-reductions:

• [R/vlv= R;

• [R/v]v, -- v, if v, ¢ v;

• [RIv](E F)= ([RIv]E [RIv]F);

• [R/v]a,.E = av.E;

• [R/v]AvI.E = Av,.[R/v]E if va ¢ v, and either vl does not occur free s in R or v does

not occur free in E;

afree: outside the scope of a Avl.
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• [RIv]_vl.E = Av2.[RIv][v21vl]E if vl _ v, vl occurs free in R, and v occurs free in E.

(v2 is a fresh variable occurring in neither R nor E.)

For example,

((_vl.(vl -1)) ,2) _ (*, -1)

is a rule in the first group.

The second group of rewrites--the group that constitutes the actual "program"---consists

of a list of name-expression pairs: (f, (some expression)). Such a rule indicates that an

occurrence of the name f in the configuration can be replaced by the associated expression.

Often called a 6-reduction, this is also a popular way to implement recursion in programming

languages (like Lisp), since the replacing expression may also contain the name .f. (Fixpoint

combinators are another way to define recursion.)

To illustrate, let us recode the plus program from the preceding example in LC. "Zero"

(0) is encoded by the expression Av. v. We represent ordered pairs [zl, z2] of objects xl and

Z 2 as

[_1,_,] =-_1 .((Vl _1) _,).

The integer "one" is represented by [s, 0], "two" by [s, [s, 0]], etc., where s is an abbreviation

for the expression Avl.Av2.v2. The successor (succ t) of an integer t is computed by the

function

succ =_ _v . [s, v]

Let Avx.,_v2.va and Ava.Av2.v2 represent true and false, respectively. A predicate zero?

that tests whether an integer is zero, giving true if so and false if not, is as follows:

zero? =, ._vl . (vl (,_v2 . ,_va . v2 ) ).

One can check that (zero?O) =_" true and (zero? (succ z)) =_" .false.

We also need a predicate that extracts the second member of a pair:

seeond_ _, .(,,1 (,_,,,._,,_.,,_)).

The program for integer addition consists of the rewrite rules for succ, zero ?, and second

above, and the following rule for plu_.

plus_ _ . av, . (((zero?v_)v2) (s,ec ((plus(second_1))v2))).

plus begins by applying zero? to its first argument. If the result is true, the true expres-

sion selects the second of the two arguments, v2. If ,false, the result is the successor of

(plus (second Vl) v2), that is, plus is applied recursively.

Once again, although the definition of the plus program in lambda-calculus is completely

different from the logic programming and the applicative versions, the structures of all three

plus programs are quite similar. I
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Definition 31 A computation in a NTTRS is a finite sequence of configuration-position-rule

triples,

[_1,_,, <_,,_1)1,..., [*.,_,.,<o_,_.)1,[_.+,,., ,1 (1)

where, for 1 < i < n, an instance of the rule (oq,/3i) applied to ri at location wi yields ri+a

(. indicates "don't care"). The path of the computation consists of just the locations and

the rules (ignoring the configurations).

Note that, for a given rule (ct,/3) and subterm r[w], there is a unique instance of the rule

that rewrites the subterm, namely, (O(a),O(fl)), where 0(5) = r[w]. This is a consequence

of Theorem 27.

A path is said to be maximally general if each rule of the path is maximally general.

That is, if (o_,/3i) is the i'th rule in the path, there is no rule (eft,/3 ') of which (ai,/3_) is a

substitution instance. In this paper, "path" will always be taken to mean "maximally-general

path".

Example 32 [LP] Consider once again the simple logic program for plus. When the initial

configuration is the goal plus(s(O),s(O),s(s(O))), we0btain the follo_ng computation:

[plus(s(o), s(0), s(s(0))), _, (ii)l _ [plus(O, s(o), s(0)), _, (i)1 _ [true, ,, ,].

In each step the position is ,, so the path of this computation is [¢, (ii)] =*[¢, (i)]. |

Example 33 [AP] The plus program of Example 29 gives the following computation corre-

sponding to 1 + 1 ," 2. "

[(ptus(s,,Cco))(succo)),,, (ii)]
[( succ ( (plus O) ( succ O)) ), l .3,(i)] :=_

[(.ucc(suet 0)),., ,].
• :: 7 : :z:

Example 34 [LC] Following is a portion of a computation corresponding to 1 + 1 =v" 2,

using the program in Example 30. In the sequence, successi_ve configuyati0ns are shown.

To save space, multiple steps have been combined. To the right of each configuration is. an

indication of what rules were applied: [B+] refers to one or more/5-rewrites, [plus] signifies a

substitution for the name plus, etc. The subterm that is rewritten is underlined.

((leL_ Is,01) Is,0])) [p/_,]

((ze.o_.[8,ol)[s,O]l(succ((ptu.(s<co.e[.,Oll)[8,01/) [=erof,_+]

(fats_[8,0])(_u_c((ptu_(s_cond[,,0]))Is,0])) [_+1

(_ucc((ptu_(8_co.dls,0]))Is,0])) [second, t3+]
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(suet((ze 0) h, 01)) [pZus]

(several steps omitted here)

( ucc[,,o])

h,h,o]]

Thus over this path we find that (plus Is, 0]) [s, 0]) =_" [s, [s, 0]], as expected. |

In the three preceding examples, the plus programs are quite similar, both in the way they

represent naturals and in the recursive definition of the plus function. The paths, however,

are not all similar. Whereas the LP and AP paths for "1 + 1 = 2" are easily comparable,

the LC path is very different, since the TRS rules are quite distinctive. In the next two

sections we present two analytical learning algorithms, AL-1 and AL-2. The question we

should anticipate is this: will the results of the learning algorithms be comparable in all three

TRS's, or will the results be di_cult to relate, especially in the LC system vis b. vis the other

two? The answer to this question gives us insight into the nature of the learned information.

For, if the learned structures are similar in the LP and AP cases but not in the LC case,

then what is learned pertains more to the path of the computation than to the semantics of

what it is computing. Conversly, if the learned information is similar in all three languages,

the learning algorithm is acquiring semantic concepts rather than syntactical or operational

ones.

The AL-I Algorithm

If,in Example 32, our initial configuration had been plus(s(O),s(s(O)),s(s(s(O)))) or

pIus(s(O), O, s(0)), the total computation would have followed the identical path. It is not

difficult to see that plus(s(O), zz, s(zz)) is the most general goal whose computation follows

this path. In some sense, once we have proved the latter goal, we get all the former goals

almost "for free", since they are just instances. This is the idea behind the well-known

algorithm known as EBG or goal regression. We shall formalize this process for NTTRS's

and call the resulting algorithm AL-I. The new name is justified, since new considerations

arise in the more general setting of TRS's that are irrelevant to the special case of logic

programming, as the next example illustrates.

Given a program and a path for that program, we should like to determine the most

general configuration that can be rewritten using that path. Unfortunately, no such config-

uration exists, in general. The next example shows why.

Example 35 [LC] For purposes of this example let us modify the grammar in Example 4

by replacing the fifth production rule as foUows:

Expression1 _ A Lambda-param Expression.
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Algorithm _ (Stretch)

Input: Configurations rl and r2, with rl D r2;

A position w E ft(r2).

Output: A configuration r12 such that rl ___1"12 _ 1"2 and w E fl(r12).
Procedure:

1. If w E fl(rl), then return _'1.

2. Else let _ be the longest prefix ofw such that _ E fl(rl) and the node at location _ is

labeled by a general type, say G j.

Remark: The same general type GJ necessarily occurs at position ff_ of the parse of

1"2, and _'i [w] = G j z_ for some i. See text.

3. Compute Ezpand(r2,ff)).

Remark: E_pand computes a replacement for the term at position _ E N(rl), consist-

/ng of an appropriate term of the same type. See Lemma 37.

4. Let 0 be the substitution that maps z_ to Ezpand(r2, ff_) and maps other variables to

themselves; let _'_:= 0(rl).

5. Return r12 = Stretch(rt, r2,w).

Figure 2: The Stitch algorithm.

(The dot separating the parameter from the expression has been omitted.)

the following two non-unifiable LC configurations:

rl: _ va ( _v2v2 zl)

Now consider

7"2 : ( 8_JCC ( )i'O 2 "02 F, 1 ) )

The underaned expression, ( A v2 v2 za ), can be rewritten with a #-reduction rule to zi.

Moreover, in both rl and 72, this term occurs at the same location, w = 1 • 3. Thus, in each

configuration, the same path of length one can be used to rewrite this underlined lambda

expression to Zl. But what is the most general expression such that this rule can be applied

at position 1 • 3? By the sup algorithm, r_lA _'2 = z, where z is a fresh variable of type

Ezpression. Because position w does not occur in the term z, the path used to reduce rl and

r2 does not apply to their least generalization. Hence no configuration that subsumes both

rl and r2 contains the redex (Av2 v2 Zl) at position w = 1 • 3, and there is no most-general

configuration to which the path applies. I-

If we cannot look for the most general configuration that can be rewritten along a given

path, we can instead determine the most general configuration that both is rewritable along

the path and subsumes _'0, where ro is an ezplanation (or ezample)_ a ground configuration

together with a computation along the path.
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The AL-1 algorithm doesjust this for a generalNTTRS. Beforepresentingit, however,
we need to describe a procedure, Stretch, that plays an essential role in the AL-1 algorithm.

Stretch takes two configurations 71 and _'2, where rl __ r2, and a position w E f_(r2), and

returns a maximal configuration 712 such that _'1 __ r12 __ _'2 and w E _(_'12). Later we shall

argue that this configuration is unique up to variants.

If w E _2(rl) then we can simply let rl_ = rl and stop. Otherwise let _ be the longest

prefix of the integer string w such that ¢Dexists as a location in rl and such that the node

at location ff_ in the parse of rl is a non-terminal, say, B. Such an W surely exists, since, if

nothing else, the empty string e is a prefix of w, and the node at location e is labeled by

the start symbol G °. The corresponding node in the parse of r2 must be labeled with the

same non-terminal B, since _'1 __ _'2. Furthermore the tree rooted at location _ in the parse

of _'1 must be a tree variable the form GJx{ for some j, since for any other tree, either D is

not the longest matching prefix of w, or w = D, or rl _ r2, contrary to assumption. Let

G j ---* B1 be the production corresponding to the node at location _ in _'2. We replace the

configuration 1"1 by a new configuration r_ whose parse tree is derived from that of rl by

J (including the one at ff_) by the tree G j • B1.replacing each occurrence of the subtree G j. x_

With a non-terminal leaf node B1, this is, of course, an incomplete parse tree. But a simple

algorithm can be invoked to expand B1 to its unique most general parse subtree in/:(B1)

while preserving the "1 relation to the parse of 72. Having thus "stretched" the term T1 to

r_, we repeat the procedure until the resulting configuration contains the required location

tO.

The algorithm Stretch is given in detail in Figure 2; the subroutine Expand is given in

Figure 3.

Example 36 [LC] We illustrate the result of applying Stretch to two terms and a given

position, following the steps in the Stretch and Expand procedures. Let rl = zl, a maximal

lambda term. Let T2 = kvl.(Av2.v2 zT) and tO = 1 4 (the term at this position in r2 is

underlined). The parse tree, tree(r1), is: Expression zl. The tree, tree(v2), is:

Expression Expression1 A Lambda-param vl • E_pression E_Tressionl (etc.).

w does not occur in rl, and the maximal prefix _ is e. We therefore replace r_ by the term

T_ with the incomplete parse tree, Expression Expression1. (This is the result of step 1 in

Expand.) Expression1 is a special type, so we expand it (Expand, step 2.3) in such a way as

to unify with the parse tree for r2:

Expression Expression1 A Lambda-param . EzTression

Since the underlined elements in this tree are non-terminal leaf nodes, this tree is still

incomplete. We therefore continue expanding them by recursively calling Expand, with the

result:

Expression Expression1 A Lambda-param va Expression x2 •

Here, step 2.2 has been applied; v3 is a fresh variable of type Lambda-param, and z_ is a

fresh variable of type Expression.
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The resulting configuration, _v_.x!2, now has a term, z2, at position w = 1 4; hence this

term is output as rl_, and the Stretch process is complete. Note that rl __ r12 __ r2, as

required. !

The next two technical lemmas characterize the relevant properties of Stretch.

Lemma 37 Let r be any configuration and _ a location in r such that r[_] E _:(B).

Expand(r, Gs) returns a most general term r' satisfying these conditions: (1) r' e L(B); (2)

r' _ r[_]; and (3) for all i • N, if the node at location _-i in tree(r) is labeled by a type

or a constant (anything other than a variable), then the same label is assigned to the node

at location i in t.ree(r'). That is, the tree r' matches the structure of r[$], except that some

subtrees of r[_] may be replaced in r' by tree variables.

Note: Another way to state this is that

[Expand(r,_s)] = U{[rq I r'satisfies conditions (1)- (3)}.

Although £,(B)/- is not a lattice, the conditions ensure that this join exists.

PROOF: By induction on the height h of r[_]. For h = 1, the parse of r[D] is either B.cl... ck

where each r4 is some constant, or possibly G/- =_ if B is the general type G j. In the former

case, step 2.1 applies, providing a term r' such that r' - r. In the latter, step 2.2 provides

a term z_ consisting of a fresh variable. Either way, the requirements of the lemma are

satisfied.

Inductively, for h > 1 the production in step 1 is of the form B --+ (1... (k, where at least

one of the (_ is a non-terminal. (Note that productions of the form G _ --+ B' are covered by

this case.) Proceding again by cases, for those ¢_ that are constants, step 2.1 applies. For

_ = B r, a special type, case 2.3 applies: Expand is called recursively, and by induction, the

result is a term of type B', maximally general while remaining "1 r[_ • i]. (_ cannot be a

variable, so the only remaining case is where (_ is a general type G _. Instead of expanding _"

further, Ezpand supplies the most general term of the same type---namely, a fresh variable---

so as to fulfill the maximum-generality requirement. Finally, the results of expansion of all

these (_ are concatenated in step 3 into r', a most general term that is __ riD] that preserves

types at the level below B. I

Lemma 38 Using the notation of Figure 2, Stretch(r1, _'2,w) computes a most general con-

figuration rx2 such that _'x __ r12 __ _'2, and w • _(r12).

Note: Another way to state this is that ......

[Stretch(r1, r.,,w)] = U{[..r12] I ___-,1, and ,,.,• 00,-,=)}.

Since the ri are configurations--and hence terms in £(G°) _ the join exists, by Theorem 27.

PROOF: If the algorithm exits in step 1, the proof is trivial. Otherwise, let D be the proper

prefix of w found in step 2 of the initial call to the algorithm. Since rl [_] is a term of type
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algorithm _a (Expa,_d)

Input: A configuration r;

A position _ E f/(r) such that a non-terminal B occurs at position

in the parse of r.

Output: A term in £(B).
Procedure:

1. Let B ---* (1 ... (h be the production in the grammar that corresponds to the

node at position _ in the parse of r. Initialize: P_ := e for all i, 1 _< i < k.

2. For each i from 1 to k, do:

CASE:

2.1 (_isa constant c: P_ := c.

2.2 (i is a general type G_ or a variable z_: P_ := z_, where z_ is a fresh

variable unused in any expression so far in this or any calling routine.

2.3 _ is any other non-terminal B': P_ := Expand(r, _ . i).

3. Return the term Pi • ..." Pk.

Figure 3: The Expand algorithm.
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G j for some j, _- 1 is also a prefix of w. As noted in the discussion preceding the algorithm,

is in fact the maximum prefix of w for which there is a term in ra at location _ of any

type B; for if B were not a general type G j, then either there would be a non-terminal at

location _ • 1 of tree(r1) (contradicting the maximality of _) or there would be a terminal

symbol at that location and we would have _ -- w (contradicting the assumption that _ is
J Moreover,a proper prefix of w). Therefore, the term rl [_] is a variable, which we'll call z i-

the node at location _. 1 in tree(r2) is labeled by a non-terminal, B1.

Let us analyze the configuration r _ - /9(rl) obtained in step 3 after substituting for z_

the result of the call to Earpand. By Lemma 37, this term, r_[ffJ], is a most general term in

/_(G j) such that _'_[_] __ _'2[ff_] and the term at location _-1 in _-_ is at least as general as

the corresponding term at location ff_• 1 in r2. Hence r_[ffJ • 1].is a term of type B1, and so

J to r'[_] and other variablesrl[_] _ r'[_] "7 r_[_]. Let/9 be the substitution that maps :r i

to themselves; then rl --7 /9(r_) = r' __ r2. r' is then passed as the first argument to the

recursive invocation of Stre_,ch in step 4.

In successive calls to the Stretch algorithm (step 4), let r;, r_, ... be the sequence of

configurations that are passed as the first argument. In particular, _'_ = 1"1, and if the

algorithm halts, the last term in this sequence is the final output. But we have just seen

that this sequence of configurations is monotone decreasing with respect to the subsumption

ordering _; and the sequence of prefixes _ of w in step 2 increases in length by at least one

on each successive call. Thus this sequence of calls must terminate. And since, by Lemma

37, each configuration rt,+l in this sequence is maximally general for those terms having this

sequence of positions, the final output has the required properties. |

With these preliminaries we can now develop the AL-1 algorithm. The algorithm applies

to any NTTR.S, but the system and language are "built in', i.e., are not input parameters

to the algorithm. For this reason the algorithm is actually an algorithm schema, to be

instantiated for any particular TRS. Note that, for expository purposes, the formal version

of the algorithm in Figure 4 contains many more variables than are really required.

Input to the algorithm is a ground computation of lenlgth n >_ 1. The output from AL-1

is a new rewrite rule (&, _), valid in the sense that & =_" _ according to the existing rewrite

rules _. Informally, this rule is sumcient to accomplish in a single rewriting step what the

ori_nal ground computation achieved in n steps, and moreover is the mos_ general such rule

for the path. What one might use this new rule for is outside the scope of the algorithm, but

the rule can be viewed as a "chunk" or "macro-operator", potentially useful for making the

program more efficient. Such considerations belong to the deterministic computation model

(and as such we shall discuss them later).

The procedure is quite simple. Let

*,*]

be the computation, and let A1 and B1 be program variables, each with an initial value of

z °, a fresh variable of type G °. For each step i in the path, we shall apply substitutions to

Ai and rewrite rules to Bi at the same positions as are applied to the example configuration

rl in the computation. The resulting rule will be (A,+I, B,+I).
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Algorithm S (AL-1)

Input: A ground computation [n,wl, (al,/31)],...,[r,,,w,,, (a,,,/3,)], [r,,+l, *, *]

of length n. (We may assume that no two rules in the path have variables in common.)

Output: A rule (a,3).

Procedure:

1. Initialize: A1 := x °, a fresh variable of type G °. B, := x °. The algorithm uses the

additional variables A_, AAI, Bi, BBI, ¢i, and 8i, for 1 < i < (n + 1).

2. For i:=l,...,n:

2.1

2.2

2.3

2.4

2.5

2.6

BBI := Stretch(Bi, ri, wi).

¢i := mgu( BBi, Bi).

AAI := ¢i( Ai).

Oi := mgu( BBitwi], al).

Bi+x := Oi(BBi[wl 4--- /_i]). /* Apply the most general instance of the rule

(ai,/Si) to BBI at location wl */

Ai+l "= O_(AAi).

3. Output (&,/_)= (A,,+I,B,,+I).

Figure 4: The AL-I algorithm.

Suppose we want to rewrite Ba using the same rule (al,/51) and position wx as in the first

step of the computation path. Since position wl may not exist in Bx, we must first stretch it

so that, if necessary, it acquires a subterm at position wx while remaining as general as rl.

Let BBa be the result of stretching B1. Let ¢1 be the substitution such that ¢1(B1) = BB1.

Since ra[Wl] is an instance of at and BBa[wl] _ r_[w_], it follows that BBl[wa] unifies with

(but may not be an instance of) al:

Let Ox be a most general unifier of BBI[wl] and al; we rewrite BB1 to $,(BBI[wa _/51]), and

call this term B24. A2, in turn, is obtained by applying the same substitutions ¢1 and 0a to

A1 that were necessary in order to rewrite B1. This process then repeats for the remaining

steps of the computation.

4In effect we are paramodulating BBI.
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Theorem 39 Refer to the notation of Figure 4, in which rl is the initial ground configuration

of the computation, and (&, 8) the resulting rewrite rule. Let 7r denote the path of the

computation. Then & is the most general configuration __ rl for which lr is a valid path, and

is the configuration that results from rewriting & along the path _r. Equivalently,

& = L.J{r E I;(G °) ]r _z r: and there exists a computation using z" starting from r).

PROOF: The proof of this theorem is not deep, but it does involve quite a lot of bookkeeping.

Therefore we include only enough detail (hopefully) to convince the reader of the claims.

We shall continue using the notation of Figure 4. Note especially that the "variables" Ai,

B_, AA_, BB_, and so forth are assigned only once during the algorithm, so that we can refer

to their values unambiguously in the proof.

The proof is by induction on the length n of the path, with the following inductive

hypothesis If(k):

For all i _< k,

1. There exists a substitution ¢_ such that _(A_) = rl;

2. There exists a substitution _/i such that r/i(B_) = r_;

3. For all variables v E dom(¢¢) _ dora(r/,), _,(v) - r/,(v);

4. A_ _* B_ via a path consisting of the first i - 1 steps of the path z" of the

input computation.

If this holds for all k, then it follows that the algorithm outputs a rewrite rule (A,_+I, Bn+l)

such that An+l =_" B,_+I over the n-step path z'. That A,,+I is the most general such

configuration follows directly from Lemma 38 and the fact that the _bi's and 0i's in the

algorithm are most-general unifiers.

The basis (n -- 1) corresponds the the initial situation (A1 - z ° = El) and a path of

length zero (no rewrites). It is dear that the substitutions ((z °) = _/(z °) = rl satisfy the

hypothesis, and that Ax "rewrites" to B_ trivially over the empty path. Note,also that A:

is a most general configuration: =-: :::: ...... : ::: : : :

We now assume If(i) and show that H(i + 1) holds. A_ becomes A_+I by first computing

AAI = _bi(Ai) and then applying 0_ to AA/. Similarly, Bi becomes Bi+l by first computing

BBi = _bi(Bi), and then rewriting BBi using the i'th rule in the path.

We first argue that the four properties of th e hypothesis are also true of AAi and BBi

(i.e., they are preserved by the substitution _bi). To see this, note first that, by Lemma 38,

Bi __ BB_ _ n, verifying property (2). - .....................

Let T/' be the substitution such that _'(BB_) = n. To verify property (1) for AA_, we

construct a substitution _' such that (_(AA_) = rl. For this purpose, partition the variables

_(A_) in A_ into two groups: those that are in dom(_b_) and those that are not. If v belongs

to the latter, then ¢i(v) must be a ground term, and for each occurrence of v in A_, _i(r)

matches this ground term at the same position in r_. The stretching process replaces some

variables by terms containing fresh variables only, so no new occurrences of this variable v
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will be created in AAt by applying the substitution _k_. Therefore, by defining ('(v) = (_(v),

we preserve property (1) for the subset of variables not in dom(xbt).

For property (3), if v occurs in B_, then by hypothesis (t(v) = _/t(v), a ground term, and

since v is not in dom(_bt), _/t(v) = _l'(v) = ('(v). Also, if v does not occur in Bt, (3) holds

vacuously.

Now consider a variable u 6 dom(_b_). _bt(u) is a term containing only fresh variables. The

substitution 7/' maps each of these fresh variables to the ground term at the corresponding

location in n, so 7/t(u) = _/(_b(u)). But (t(u) = T/t(u) by property (3), so if (' is defined so as

to agree with 7/' on these fresh variables, again we will retain both properties (1) and (3).

Thus, by composing the two cases above, we see that the substitution (' = ( o t/' maps

AAI to rx and agrees with t/' for variables in the intersection of their domains.

Finally, for property (4), we need to check that _bt(Ai) =¢'" _bt(Bi) over the same path

(the first i - 1 steps of _r). From the facts that At =_* Bt over this path, AAt -2 rx, and xbl

introduces only fresh variables, this verification is straightforward but tedious, so we omit

the details.

Next, we argue that Bt+, _ n+,. Recall that Bi+, = 8_(BBt[_o_ _ fl_]), where 8t is the

mgu of BBi[wt] and ext. By assumption, no variables are common to both al and BBt, so

dom(0t) = "l;(BB,[wt])O V(at). We partition the variables in BBt into those in dom(gt) and

those not in the domain. We construct a substitution _/t+x such that r/t+x (Bt+l) = n+,. Since

BBt[wi] -2 n[w_] and at _2 n[wt], it follows that

But

8,( BBttw,]) = BB,[wi] r-1txt.

Thus there is a substitution $ such that $ o 8t = 1/' (see Figure 5). Thus if v is a variable in

dom(Oi) N V(BBt), 4 o St(v)is the ground term that occurs at the same location(s) in n[wl]

as v does in BBi[wi].

If v is not in dom(Ol) but occurs in BBI, then from the above discussion we know that

7/'(v) is the ground term that occurs at the same location(s) in n as v does in BB_. Since

these two sets of variables are disjoint, 7' o ek o Oi( BBi) = n.

NOW,

"ri+l =
= '7'otk°Ot(BBt[wi +-- $oSi(Bi)]

= 7'o¢oet(BB [ t
C_ Ot(BB_[w_ *--_]

= Bt+l.

To argue that A_+x _2 r_, we proceed similarly. Partition );(AAt) into variables in dom(0t)

and other variables. It is the former that are significant, so let v be in dom(Ot) N );(AAt).

From the discussion above, we know that ('(1,) = t/'(v) = a ground term in r, (and also in
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r_). From Fig. 5, O_(v) 2_ rf(v), so O,(v) 2 ('(v). Hence (' o 0, = (' (recalling that (' is a

ground substitution), and

rl = ¢'(AA,)
- ('o Oi(AAi)

-- ('(A_+z).

It is routine to show that that variables common to A/+z and B_+z axe mapped to the same

ground terms in rz and r_+z, respectively, and that A_+z =:_* Bi+z over the path consisting

of the first i steps of the path in the example. Then the induction is complete, and with it,

the proof. |

BB ,[wi] 04

11' Oi O_

Figure 5: Substitutions used in the proof of Theorem 39.

Example 40 [LP] To illustrate AL-1 in a familiar setting, let us see how the AL-1 algorithm

generalizes the example pl_,(s(,(0)),0,,(s(0))) using the logic program for plus. The proof

of the example has three steps, shown in the first Column of the table (the first line is the

initial state). The numbers in parentheses axe the rewrite rules (clauses) used in each of

the steps. To avoid variable conflicts, a variant of each rule using fresh variables has been

applied in each step.

The second and third columns show the values of the variables A_ and B_ after each

step. The substitutions 0_ we _h0wn _n the (ourtt_ coJu_mn_.The c_ to Stretch are all
"no-ops" in this exampl e since the rewrite Positions w_ in the computation are all e. Thus
the substitutions _i are all identity functions. Finally, if we apply all the substitutions to

the initial value z_, we obtain, as output, the rule pZ_s(,(s(0), _,:(8(_))):- true. |

ri rule Ai Bi Oi

pl_(s(,(0)),0,s(s(0))) 60 g_ g,

vl_,(0),0,,(0)! (_0
pz,,4o,o,o) (9

pt_,,,(,,(._),._,,(.,,))
pt,,.,(.(.(,,_)),-_, .(.(*d))

p/u4z:,za, z_)
plus(=5,z3,_8)

g_:=pa,.,(,(._), ._, ,(.,))

t,-,,, pz,,.(.(.(o)),z,,,(,(._))) t,.-.,. ., := o,_,.:=._

Example 41 [AP] We apply AL-1 to the plus program in Ex_ple 29 and to the computa-

tion in Example 33. The steps axe summarized in the following table, and the resulting rule

is: ((_Zus (s 0)) za) --_(s:.j._ = _ :
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iipl_ (_o)) (, o))
(, ((pl_ o) (, o)))
(, (, 0))

Ai

Zl

((pt_ (, =2))_3)
((pt_ (, 0)) _3)

Bi

(, ((pz_s=2)_3))
$ Z3)

0i

z_ := 0

Example 42 [LC] Let us apply AL-1 to the computation sketchedin Example 34: ((plus [s, 0])

[s, 0]) =v* [s, [s, 0]]. By anMogy with the preceding example, we expect the result to be

(((plus[,,o])_1), [s,_])

(or a variant thereof), and, indeed, this is the outcome. But because the path for the

complete computation is so long, we shall follow only the first few steps.

The input configuration ra is ((plus [s, 0]) [s, 0]), and the path is sketched in Example 34.

We initially take our configuration to be zl (an expression variable).

The first step, a replacement for plus, occurs at a location not in zl; so B1 = zl is first

stLe_tehed into BB1 = ((plus z2) z3). To apply the plus rule, we unify plus with itself (so 6x is

an identify), and replace plus by its corresponding lambda expression (with fresh variables),
to obtain

B_ = ((av,. av_. (((zero?vx) v_)(,u_ ((plus(se,onav_))_,) )) _ ) _ )

and A: = ((plus_:) _).
The next several steps are/)-reductions at locations already in B2, so that stretching has

no effect. Consider the first of these, the fl-substitution of z_ for the parameter vl. The

maximal rewrite rule applicable here is the/_-reduction rule:

((Av_a. _v_2. (((_aol vg_) v_) (Z_o, ((z_o_ (_o, v_)) v_))) Z_o_)

_,,. (((_o_ =_o_)v_) (_o_ ((_o_ (,=io,_io,)),,_=))).

The result of applying this rule to B_ is

B3 = (Av2.(((zero?z2)v_)(succ((pIus(secondz2))v2)))z3).

The cumulative result of just these two steps is the rule:

((plus_) _) _ B_.

The remaining steps are similar to the first two, with the final rule being:

((plus [,, 0]) _) _ [s, _]. m

Finally, a simple but useful observation is that A1 2_ A2 2_ ... __ A_+I, that is, the

lefthand side & of the final rule (&,/_) becomes monotonically less general as the length of

the path increases. Since & contains the "pre-eonditions" that must be satisfied before the

new rule is applicable, it follows that the rule becomes less general as the length of the

path_and in some sense, the amount of information in the computation_becomes larger

W_th AL-1, it seems that we learn less and less from more and more. One way to avoid this

problem is discussed later when we consider deterministic rewriting systems.
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A Counterexample: Elementary Formal Systems

Elementary formal systems (EFS's) [1, 2, 31] are a form of logic programming useful in

learning formal languages. Briefly, an EFS is a Horn-clause logic programming language

with string concatenation as the only function symbol. For example, let _ = {a, b, c} be an

alphabet, and let zl, =_, ... be variables taking values in _+. The clause

p(a lbabx,) :- true (i)

says that any string of the form azababz2 (with nonempty strings substituted for the =i's)

has property p. Similarly, the clause

p(c.za=4) :- p(=3bz4) (ii)

states that an instance of the string pattern cz3z4 has property p if the instance of z3bz4

with the same substitution for z3 and z4 also has property p. Combining these two clauses,

we can prove p( caababba ), for example, by matching z3 = aaba and z4 = bba in the second

clause, reducing the goal to p(aababbba), and then matching zl = a and z= = bba in the first

clause. The computation is as follows:

[p(caababba), e, (i)] _ [p(aababbba), ,, (ii)] _ [true, ,, *].

EFS's diverge from our definition of nondeterministic TRS's in an interesting way: be-

cause string concatenation obeys an associative equational theory, there may be more than

one way to unify two terms. For example, in matching p(caababba) to p(czsz4) above, we

could also have taken =3 = aa and z4 = babba. Doing so leads to a different proof of

p(caababba), over the same path. The computation is as follows:

[p(caababba), e, (i)] =* [p(aabbabba), e, (ii)] =t- [true, ,, *].

For each of these two proofs we can apply the AL-1 algorithm, and as a result we derive

two different rewriting rules: p(eazsbazr) :- true in the first case, mad p(cazsabzr) :- true

in the second. Both are valid clauses in this the0ry,_ d yet neither is a variant of the other.

We conclude that Theorem 99 does not hold for EFS's.

What property of EFS's keeps them from qualifying as typed-term rewriting systems?

Clearly, the existence of multiple mgu's for a pair of terms is part of the problem, but

the Robinsonian nature of mgu's is an inferred, not a defined, property of our typed-term

languages. The actual reason is that, to admit associativity in string concatenation, the ttg

for the language needs to be ambiguous. For example, to match the pattern zlz2 to the

string aba, we must be able to parse aba as both a- (b. a) and (a. b)- a.

This counterexample is interesting because it shows that the standard EBG algorithm as

it is currently used in Machine Learning does not work as expected for at least one impor-

tant family of computational languages. Two ways come to mind whereby we could bring

EFS's within the scope of our nondeterministic term-rewriting systems. One is to adjoin
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explicit rewrite rules for the associative theory--(za. (z2. z3), (zl. z2)-z3/, for example. The

computational path would thereby record explicitly the steps taken to associate strings in a

particular way for matching, and thereby implicitly record the unifiers used in the compu-

tation. The other way is to extend the definition of a computation so as to record explicitly

the particular unifiers used in matching rules to examples; a computation would thus be a

sequence of 4-tuples instead of 4-tuples. The AL-1 algorithm then remains essentially the

same, except that the particular mgu's computed in steps 2.2 and 2.4 would be determined

by those used in the example. Theorem 39 also holds, with the understanding that the word

"path" includes the mgu's along with the rules and positions.

The AL-2 Algorithm

The formalism we have developed based on ttg's and TRS's has been useful for extending

one algorithm to a large family of programming languages. Our belief, however, is that the ,

formalism is useful in general for studying analytical learning algorithms. As evidence, we

shall use the same framework to develop another analytical learning algorithm, AL-2. Like

AL-1, the new algorithm learns from success, preserves the correctness of the program, and

outputs new rules for potential inclusion in the knowledge base. Unlike AL-1, however,

AL-2 modifies the language in which the rules are expressed. New constants and/or function

symbols may be introduced in order to abbreviate frequently occurring terms and to shorten

common sub-proofs. This resembles what humans do, for example, when we say "EBG"

instead of "explanation-based generalization" or "prime" instead of "natural number divisible

only by itself and one". Moreover, AL-1 and AL-2 can be used together or independently.

Example 43 [LP] Consider again the program for addition in Example 28. After using this

program for addition many times, an observer might determine that the term s(,(0)) occurs

sufficiently often that significant savings might well be sustained by shortening this term to

just a single character, say "2". As a result, every time this term occurs in a computation,

instead of writing seven characters, only one need be written. The symbol "2" is not now

in the language, so the grammar must be modified in a straightforward way to generate this

additional constant. Some goals, such as plus(O, 2, s(s(0))), may then be correctly handled

without any modifications to the program. Other goals, such as plus(2, O, 2), fail because the

program is not designed to handle such terms. |

Example 44 [LC] In Example 30 we introduced several abbreviations in order to shorten

the expressions we were working with. For example, we wrote 0 in place of Avl.Vl and false

in place of Avl.Av2.v2. We treated these as abbreviations for human consumption only, but

it is reasonable to consider how to incorporate these into the program so that, for example,

((plus 0) 0) _" 0. If one tried to carry out this computation as things stand, the subterm,

(0 (, v .,Xv3.v2) )

would soon occur. This can be rewritten only after replacing 0 by the equivalent lambda

expression. |
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The AL-2 algorithm takes a computation and an abbreviation, and returns a list of new

rewrite rules which, now that they are available, enable us to do the computation-- and

some related generalizations of it--after substituting the abbreviated term into the initial

configuration. Like AL-1, the input to the learning process is a successful computation, and

the result of learning is a set of new rewrite rules.

Before describing the AL-2 algorithm in detail, let us consider simple examples of how it

works.

Example 45 [LP] Suppose that we decide to abbreviate the term 8(8(0)) by the new symbol

"2". How should we modify the logic program to utilize this abbreviation_? There is, of

course, a trivial way to incorporate the abbreviation: provide a preprocessor that changes

all occurrences of 2 in the input into s(s(0)), use the program as is, and then replace all

s(s(0)) terms in the output by 2. But this clearly saves neither time nor space in the

computation.

Here is a better way. When we try to satisfy the goal plus(2, 0, z), using the program

above, we run into trouble because 2 fails to unify with s(z_) in the second clause. Since 2

is just an abbreviation for s(s(0)), the clause

= =

is clearly valid. We obtain it byinstantisting z2 to s(0iandrepiacing the resuiting occurrence

of s(s(O)) on the left by 2. With the addition of this clauseto the program, the family of

goals plus(2, z,, s(z2)) can be solvedin fern,s of the new symbol 2. I

Example 46 [LC] Suppose we wish to perform the computation (zerof 0) without replacing

0 by Avl.vl. We have no trouble with the first step--replacing ze,'o _. by its definition,

( ero?0) true)0),

--nor with the next, a _-reduction leading to (0 true). At this point, however, w e are stuck.

If we check how this step is done when 0 iswritten Av3.v3, wesee that the rule being apphed

is ((_v3.v3v4), v4). After introducing the abb_eviati0n into this rule, w e see that the only

new rule we need in_orderi0compiete the computation is _

The computati0n then concludes successfully, with a result of true. |

Definition 47 Let B be a type in a typed-term grammar. A s_onym of type B is a pair

(a, _'), where a is a symbol not in the grammar (terminal or otherwise) and _" E £(B) is

a ground term of type B. We shall often refer to _r as simply a synonym for r, and write

"_s r. Normally, the type of the synonym is clear, and we omit the subscript B.

Example 48 [LP] In the preceding LP example, "2" is a synonym of type Term for s(s(0)).

It is equally a synonym of type Term1, but in general it is preferable to consider it an element

of the most general type possible in the grammar. I
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The AL-2 algorithm outputs rewrite rules in which the new symbol _r occurs; consequently

the grammar _ must be extended to a new ttg _' in such a way that both a and r are in

/:(B). One way to accomplish this is as follows;

1. If B has arity one, add the production B _ a to the grammar.

2. Otherwise, make B have arity one by replacing all productions 13 _ ... by B' _ ...,

where B' is a new non-terminal, and then add the productions B ---, a and t3 _ t3'.

We assume henceforth that _ has been so modified.

Definition 49 Let a ._ _" be a synonym of type B and let _ be a term in L(B 1) for some

non-terminal B'. The a-abbreviation of _, written _1,,, is obtained from _ by replacing all

type-B occurrences in ( of the subterm r by a.

Lemma 50 For every non-terminal B',/:(B') is closed under a-abbreviations. I

Just as Ezpand is the operation upon which AL-1 is based, Reunify forms the basis

for AL-2. Input to Reunify consists of a synonym a "_s r of some fixed type B, a term

_, and a ground instance _0 of _. The output is a term (' such that _ "1 _' __ _0 and

_'1,, -_ _o1_. Intuitively, Reunify finds an instance (' of _ that is as general as _0 both

with and without the abbreviation a. For example, when _ is plus(s(z),y,s(z)) and _0

is plus(s(s(O)),s(s(O)),s(s(s(s(O))))), then _0l= is not an instance of _12- However, _' =

plus(s(s(O)),y,s(z)) is an instance of _ such that _' _ _0 and _'12 -_ _012.

The algorithm for Reunify is shown in Figure 6.

Lemma 51 In the notation in Figure 6, the output of Reunify is a least upper bound of all

terms _ such that _ __ _' __ _o and _11_ "1 _ol_,.

PROOF: The proof is by induction on n, the number of locations w such that (_ol,,)[w] = a

and (_l,)[w] _ _ol,,[w]. Suppose n = 0. Then (' = ( and _ = (' __ _o. We claim that,

with n = 0, there is no location w' such that (_l,)[w'] _ ((01,)[_']; it then follows that

_l¢ -_ _ol,. Suppose such a location w' exists. Since _ "7 _o, there exists a substitution /9

such that/9(_) = _o, and hence (/9(_))["]1- = _0[w']l,. By assumption, however, (/9(_1_))[_']

((ol,)[w']. In other words, substituting the abbreviation a for r in _0 has the effect that

/9 is no longer a unifier for the subterms at position w'. The term (_l,)[w'], therefore, must

contain at least one variable z such that /9(_:) is a subterm of r. Let w" be the location of

this occurrence of r in <o. Then both (<l,,)[w"] _ (_ol,,)[w"] and (_ol,,)[w"] = a. But then

n > 0, contrary to our assumption. Thus no such w' exists, and ( satisfies the lemma.

Next, assume that the lemma holds for all terms for which n < k, and suppose _ is a

term such that _ "1 _o and n = k + 1. Let w be the location chosen in step 2.1 and/9, the

substitution in step 2.2. Since r is ground, /9 is unique. Clearly _ -7 /9(_), and/9(if) __ _o.

When /9 is applied to _, n decreases by at least one. Hence the term /9(_) satisfies the

inductive hypothesis, and the result of subsequent iterations of the algorithms is a term _'

such that _ _/9(_) -7 (' _ (0 and ('], 2 _01,, in accordance with the claim in the lemma.
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Algo_thm 4 (Reuni/y)

Input: A synonym a _s r.

Terms _ and (o, with (: __ (o and _o ground.

Output: A term (' such that ( __ _' __ (o and (']- _- _o[,.
Procedure:

i. Initialize:_':= (.

2. While ¢'1, _ (ol,, do:

2.1 Let w be a location such that (('],)[w] _ (¢o[,)[w] and ((ol,)[w] = tr E L(B).

2.2 Let O = rngu(f'[w], r).

2.3 (' := e((').

3. Output ('.

Figure 6: The Reuni.fy algorithm.

To argue that (' is maximally general, suppose that another term (" -'1 (' can be found

such that ( -1 ("2 (o dud ¢"[,, __ (0[,. Note that the substitution 8 such that 8(() = (' is

a ground substitution (it substitutes ground terms for some of the variables of _). Thus if

(' ;_ ¢", then there e_ists a v_able _ in dora(e)not in aom(mg_(¢,_")). But we haveseen
that every variable in dora(8) occurs within a subterm ([w] of _ such that ((I,)[w] _ ((0]_)[w].

Thus (_"l.)[w] _ ((o[.)[w], a contradiction. Thus the only possibility is that (" - ('. t

Example 52 [LP] Suppose we invoke Reunify with the synonym 2 ,,_ s(s(O)), and use it

to specialize ( = plus(s(z),y,s(z)) so that the resulting term subsumes 61. = plus(2,2,

s(s(2))) after introducing the abbreviation. Initially ¢' = plus(s(z),y,s(z)). Thus ¢'1: = _',

The subterm s(z) occurs at a location in ('l: that does not unify with the corresponding

term ("2") in 612- So we substitute z:=s(0) and replace ¢' with plus(s(s(O)),y,s(z)). Now

_"12 -_ (012, and the Reunify procedure terminates. I

The AL-2 algorithm takes a synonym a ,,_ r of some type B and a computation of length

n >_ 1, and produces a set Q of new rules incorporating the synonym. The intention is that,

by combining the rules in Q and _, one can subsequently perform calculations over the same

path using the extended language, except that some of the rules (cti,_i) in the path may be

replaced by their counterparts from Q.

The algorithm (Figure 7) is quite simple. The left-hand side of each rule along the path

is reunified with the corresponding subterm of the configuration, using the synonym a. The

resulting substitution is applied to both sides of the rule; after introducing er into the result,

this pair is added to the set Q as a new rule.
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Algorithm 5 (AL-2)

Input: A synonym a -._ r of type B.

A ground computation [rl, wl, (al,fll}],..., [r,,w,, (a,,fl,_)], [rn+l, *, *]

of length n.

Output: A set Q (perhaps empty) of rewrite rules.
Procedure:

1. Initialize: Q = 0.

2. For i:=l,...,n:

' Reuni_ ~ r, at/, r,[_,]).2.1 at:=

2.2 If a_ _ c_, then

2.21 01 :"- mgu(a_, cq).

2.22 Q:=QU {(a_[_,/3_[,}}, where/3"= O,(fll).

3. Output Q.

Figure 7: The AL-2 algorithm.

As in our presentation of the AL-1 algorithm, the algorithm in Figure 7 uses more vari-

ables than necessary in order to simplify the proof of the next _heorem. The following lemma,

whose proof is routine, is also used:

Lemma 53 Let (1 and (2 be configurations with a common location w such that

1.

2. both _x and G can be rewritten at location w using the rewrite rule (a,/3).

Then there are substitutions 01 and 0= such that 01(a) = _a[w], 02(a) = {a[w], and Ox(_xIw +---

/3]) __ 02(_2[w _/3]), i.e., the ordering relation still holds after rewriting. |

Theorem 54 Refer to the notation of Figure 7, in which ra is the initial ground configuration

of the computation. Let _' = _ kJ Q, the set of rewrite rules obtained by combining the

original rules _ with the set Q returned by the AL-2 algorithm. Let {1 be any configuration

such that _11_, -_ ra I,, and _a =_ ... =_ {,_+1 over the same path Ir as the input computation.

Then _ ]_, =_" _n+_ [_ over a path of length n, using the rules in _'. In particular, rx [_, =_"

rn+_[,,, so that the original example can be recomputed with the abbreviation substituted

into the original configuration.
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PROOF: Since the path _" applies to _1, al _ _l[vx]. If it happens that ax -1 ((11_)[o_1], then

ct_ = trl. Otherwise ct_ is the result of reunification in step 2.1. By Lemma 51,

011 _ C_ 1 __

and

Let Ia_]_,,/3_l_/be the rule added to Q in step 2.22 if a_ _ a_, or (a_,/3: / otherwise. By

Lemma 53, if we use this rule to rewrite _ l_ to _2 I¢ and to rewrite r_ ]_ to r2 Iq at location

o_1, we have that _2]_, _ r2lt,. By assumption, _2 =_" _,_+1 over the last n - 1 steps of the

path _. Thus we can repeat this argument n - 1 times more, obtaining a path

! !

over which _i I_ ::_" _.+I [_" |

Example 55 [LP] Consider the 3-step computation

pt K,(0), ,(0), ,(,(0))) pt=,(0,,(0), ,(0))

With the synonym 2 ,,, s(s(0)), the initial goal is plus(2, s(0), s(2)). For the first step of the

computation, AL-1 adds the rule

(2)

to Q. For the second step, the rule

is added. No new rule is required for the final step. Thus Q consists of the two rules, (2)

and (3). |

In the preceding example, suppose that we subsequently apply the AL-1 algorithm to the

computation using the new rules starting from the goal phts(2, s(0), s(2)). The result is the
" rule: " _ _ ...... _ _= = _:_' _ _:'_ _= _ = :_-=

p u,(2,

This can be used to supplant rule (2), since for this particular program, !t := s(0) is the only

valid instance of zs. Similarly, applying AL-1 to the second goal plus(s(O),s(O),2) in the

path yields the rule

2) :-

That the the condition _ I_ -_ _'_]_ in Theorem 54 is necessary is illustrated by the next

example.
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Example 56 [LP] With the three-step computation starting from plus(s(s(O)), O, s(s(O))) _*

true and the synonym 2 ,,_ s(s(O)), AL-2 constructs the one rule,

plus(2, zl,2) :- plus(s(O),zl,s(O)). (4)

With this rule, the goal plus(2, O, x2) is computable over the same path, but plus(s(x3), O, 2)

is not. (Note that plus(s(xa),O,2) _ plus(2,0,2).) |

In the two preceding examples, the rules found by AL-2 each have only a single valid in-

stance, and hence are not very interesting. In the next two examples, however, the algorithm

produces stronger generalizations.

Example 57 [LC] If we apply the AL-2 algorithm to the computation

plus[., Is,01]0 Is,[s,01],

using the lambda-calculus program of Example 30 and the synonym 2 ,-_ [s, [s, 0]], the AL-2

algorithm fails to find any need to reunify until reaching the following configuration:

(((2 0) J),

where J = (succ((plus(second[s,[s,O]])) 0)). The fi-reduction rule that is used in the (un-

abbreviated) ground computation is:

When we reunify the underlined subterm and the synonym for 2 with the left-hand side of

this rule, and then apply the resulting substitution to the right-hand side of the rule, we

obtain the following new rule:

(2 s) [8,01). (5)

Continuing the computation, we again encounter a reduction of the form 2 ()_v2.)_vs.v2), but

the same new rule (5) is derived. In the end, the set Q consists of just the rule (5).

It is interesting to note that this rule is neither a fi-reduction rule nor a name-replacement

rule, but instead a combinator applying the constant "2" to an arbitrary argument--in fact,

a complete and correct definition of the meaning of this symbol in the enlarged language. |

Example 58 [AP] When we apply the AL-2 algorithm to the computation ((plus 2) 0) =_" 2,

using the program of Example 29 and the synonym 2 ,_ (succ 0), the result is the new rule,

((plus 2) z_) = (s ((plus (s 0)) z_)).

When AL-1 is also applied to the example computation, the result is the more concise rule,

((plus 2) z_) = (s (s zl)). |
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Comparing the three preceding examples, we note that, whereas the three computations

are semantically the same (2 @ 0 --- 2), the rules found by AL-2 on behalf of the abbreviation

2 are entirely different, in both form and generality. This stands in marked contrast to the

AL-1 algorithm, where the semantics of the learned rules were, in some sense, independent

of the syntax of the TRS. It is not hard to see why: an abbreviation is, after all, a syntactic

modification, and the operational role of a symbol, such as "2", is expected to vary with the

TRS. Thus 2 is a combinator (like plus) in LC, a function in AP, amd a constant term in

LP.

Finally, let us note that a more general algorithm than AL-2 can be devised that in-

troduces more complex abbreviations than just constants. For example, if we wanted to

introduce the formal abbreviation "[zl, z_]" for ",_vt.((vtzl)z2)", we could not do it using

the AL-2 procedure, because this abbreviation is not a constant. Extending the algorithm

in this way entails modifying the language, including the ttg, in ways that are difficult to

generalize over the full range of our NTTRS's, but the fundamental concepts and procedures

remain essentially the same.

Deterministic Term-Rewriting Systems

The NTTRS model has three main features that enable it to extend the EBG algorithm

to other languages:

• The ability to generalize and specialize while preserving types.

• A general computational process (term rewriting) common to the programming lan-

guages used for Artificial Intelligence.

• Nondeterminism.

As noted above, the use of a nondeterministic model is appropriate for algorithms that learn

from success, because the nondeterminism assumption abstracts away all of the backtracking

search that occurs in any actual, deterministic system. Also many programming systems that

are closely related when viewed as nondeterministic look very different when implemented

as deterministic languages.

A deterministic rewriting system requires a recursive "choice" algorithm for selecting the

next position to rewrite and the rule to apply. Whereas the "state" of a nondeterministic

computation is just the current configuration , the state of a deterministic computation may

depend upon the entire sequence of configurations Sinc-eth_ee beginning oflthe computation.

The results of learning in a deterministic system may lead to changes in both the rewrite

rules and the choice algorithms.+ _-+++: +.++ 7? _ - -__ :.... : _- _ _ _

The AL-1 and AL-2 algorithms propose changes only to the rules. The AL-1 algorithmk

proposes a single rule that compresses an n-step computation into a single rewriting step,

and the AL-2 algorithm offers a set of rules that enable each step of the computation to be

carried out in an enhanced language that has abbreviations for some of the ground terms.

A real programming system can apply the AL-z algorithm(s), but will also need additional

procedures for incorporating the learned rules into the deterministic process.
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Questions of how best to incorporate the new rules into the program or to modify the

choice functions are outside the scope of these algorithms. Often called utilitv problems,

such questions require that we make explicit assumptions, such as what possible choice

functions are available to the system, how problem instances are presented, what performance

characteristics we want to optimize by learning, etc. Studies such as [5, 9, 20, 21] have looked

at ways to measure the potential effects on performance of incorporating certain rules into

a program, and ways to decide if and how to make such changes. Since no universal results

have yet emerged, the problem is evidently quite difficult. But by separating the process of

proposing new rules from questions of utility, our model may make it easier to formalize and

reason about such matters. To be sure, the failure to separate these issues has complicated

a number of previous presentations of Analytical Learning research results.

Conclusions

A Nondeterministic, Typed-Term Rewriting System is programming language schema

that captures enough of the features of AI programming languages to enable us to cast

the EBG learning algorithm in a very general form. In essence, this algorithm compresses a

multi-step computation into one step and produces a single rewrite rule to carry out this step.

An important consequence of this generalization is that EBG-like analytical learning can be

applied to languages other than first-order predicate calculus. To show that the usefulness

of these TRS's extends beyond a single algorithm, another analytical learning algorithm

(AL-2) has been derived and analyzed within the same TRS framework. This algorithm is

similar to AL-1 in that it learns from a successful computation, preserves the semantics of

the original program, and proposes new rules that streamline computations along the same

path. It differs in deriving multiple rules from the computation and in helping to install new

symbols, chosen by an outside element, that abbreviate certain frequently occurring terms.

We have not discussed the computational complexity of our algorithms, but they are

easily seen to require time and space polynomial in the length of the input computation.

Algorithms for parsing a sentence in a context-free grammar and for computing a most°

general unifier account for most of the running time.
Since the focus of this work is theoretical and no extensive empirical tests of these al-

gorithms have been carried out, the usefulness of these algorithms for Machine Learning

remains to be investigated. Nevertheless, we would like to make a conjecture. In our scheme,

a computation is any finite sequence of rewrites. In particular, there is no requirement that

the final state in the sequence be a Church-Rosser normal form. Thus given a computation

of length 5, we could apply AL-1 to the entire computation, or to only the first four steps, or

to the first three, or the last three, etc. Each of these yields a new rule that may, potentially,

be used to improve the program. W_ich sub-computatiou(s) should we give to AL-1 for

analysis_. This issue is fundamental to the concept of operationality that has been a focus

of much discussion [16, 23, 25].

We have already remarked that when a path is extended, more restrictions apply, and

the resulting rule from AL-1 is therefore less general. For this reason it seems reasonable
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to recommend the following strategy: in any given computation, apply AL-1 to all sub-

computations with a length of two steps. Why length two? Length one is too small: AL-1

will never generalize. Lengths longer than two are compositions of two-step paths, so if a

particular path of length k > 2 occurs sufficiently often, the single rule compressing that

path will eventually be obtained, two steps at a time, by successive applications of AL-1.
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APPENDIX: A Note on Sort Hierarchies and TTL's

In the discussion of the subsumption lattice of typed-term languages, we noted that ttl's

enjoy a Robinsonian unification property: any two unifiable terms have a unique mgu, apart

from syntactic variants. Walther [32] has shown that unification in a many-sorted language

with a sort hierarchy is Robinsonian iff the ordering is a forest. The purpose of this appendix

is to clarify the relationship between unification in many-sorted languages and unification

in ttl's. We argue that a many-sorted language with a forest-ordered sort hierarchy cmn be

generated by a ttg, but that the converse does not seem to be the case.

We first need to define what constitutes a sub-sort (or sub-type) in a ttl. Only general

types axe considered here, since there is nothing corresponding to special types in Walther's

theory. The natural way is to define one type G 2 to be a sub-type of another type G 1 if

the symbol G 2 can be generated starting from G 1, i.e., G 1 ---}" G 2. Then the variables z 1

and z 2 (of types G 1 and G s, respectively) are unifiable in our sense by the (unique) mgu:

8 = {z 1 := zS}. The sort hierarchy induced by a ttg need not be a forest, however, since the

grammar may contain productions such as G x _ G 3 and G _ _ G 3. With such a grammar,

our unification algorithm would not admit unifying the terms z x and x s, since x x _ £.(G 2)

and z 2 _/:(G1). By contrast, in Waiter's formalism, the term z 3 (of sort G 3) would be an

mgu. If, however, there were a type (say, G °) of which both G 1 and G s were sub-types, then

z 1 and z s would become unifiable in the ttl framework, and (as in many-sorted languages)

the mgu would not be unique: both z 1 and z 2 are mgu's. Note, however, that introducing

the type G o has rendered the grammar ambiguous; hence it is not a ttg. (Compare the

earlier discussion about Elementary Formal Systems, where, again, ambiguity led to loss of

the Robinsonian property for unifiers.)

Turning this around, we can make a many-sorted language with a forest-structured sort

hierarchy into a ttg. Consider, for example, a sort A with sub-sorts A 1 and A s and let/3 be a

sort for which there are no sub-sorts. Suppose there is a function f that takes as arguments

a pair of terms of sort A 1 and 23 and returns a term of sort A s. Assume, also, that there

are constants a, a 1, a s, and b of sort A, A 1, A s, and B, respectively, and a countable set of

variables associated with each sort. We can construct a ttg that generates the terms in this

algebra by assigning a general type to each sort and using the following productions:

A i ---, z}, j_1,i6{1,2}

A i _ a i, i6{1,2}

A ---* A i, /6{1,2}

A _ zj, j_>l

A ---} a

B ---* yj, j>l

B_b

As...,F

F _ f(A_,B)
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Here we have introduced F as a special type and used "f", comma, and parentheses as

constants. For example, the term f(a 2, y2) is in/_(A2). This illustrates how to construct a

ttg that generates the terms in a free many-sorted algebra with a forest hierarchy of types.

By contrast, there does not seem to be an obvious way to represent the typed terms of a

ttl as a simple many-sorted language, even if we impose a partia_y-ordered sort hierarchy.
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